TBS

VITE A TESTA LARGA

RONDELLA INTEGRATA

La testa larga ha la funzione di una rondella e garantisce una elevata resistenza a penetrazione della testa. Ideale in presenza di vento o variazioni dimensionali del legno.

PUNTA 3 THORNS

Grazie alla punta 3 THORNS, le distanze minime di installazione si riducono. Possono essere utilizzate più viti in meno spazio e viti di dimensioni maggiori in elementi più piccoli.

Costi e tempi per la realizzazione del progetto sono minori.

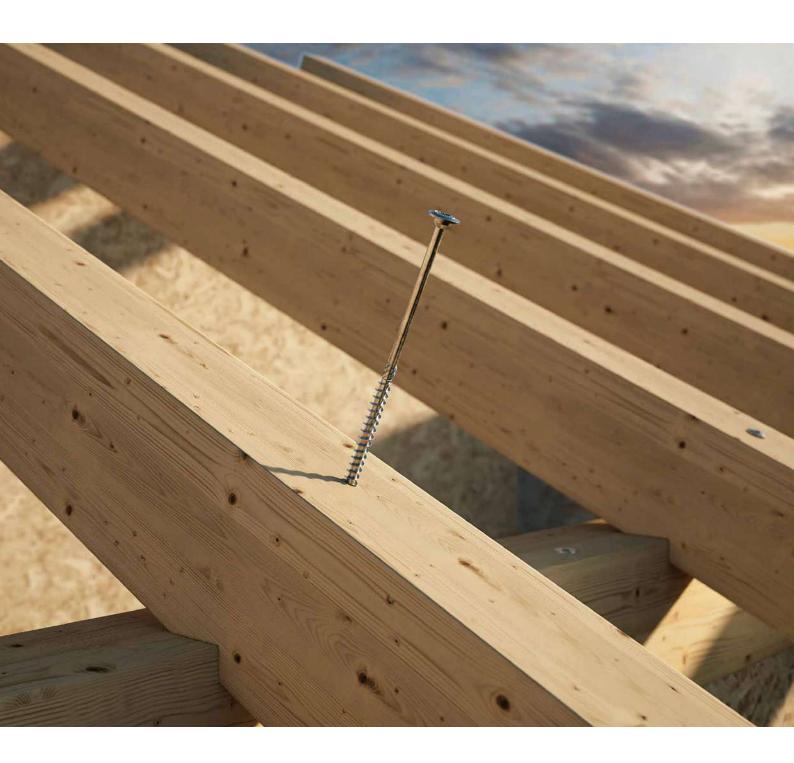

LEGNI DI NUOVA GENERAZIONE

Testata e certificata per l'impiego su una grande varietà di legni ingegnerizzati come X-LAM, GL, LVL, OSB e Beech LVL.

Estremamente versatile, la vite TBS garantisce l'utilizzo di legni di nuova generazione per la creazione di strutture sempre più innovative e sostenibili.

VELOCITÀ

Con la punta 3 THORNS, la presa delle viti diventa più affidabile e più rapida, mantenendo le prestazioni meccaniche abituali. Più velocità, meno sforzo.



CAMPI DI IMPIEGO

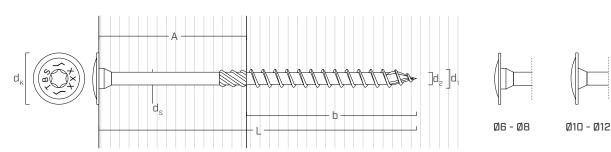
- pannelli a base di legno
- pannelli truciolari e MDF
- legno massiccio e lamellare
- X-LAM e LVL
- · legni ad alta densità

TRAVI SECONDARIE

Ideale per il fissaggio dei travetti alla trave di banchina per un'elevata resistenza a sollevamento del vento. La testa larga garantisce un'elevata resistenza a trazione che permette di evitare l'utilizzo di ulteriori sistemi di ancoraggio laterali.

I-JOIST

Valori testati, certificati e calcolati anche per X-LAM e legni ad alta densità come il micro-lamellare LVL.



Fissaggio pannelli SIP con viti TBS diametro 8 mm.

Fissaggio di pareti in X-LAM con TBS.

■ GEOMETRIA E CARATTERISTICHE MECCANICHE

GEOMETRIA

Diametro nominale	d_1	[mm]	6	8	10	12
Diametro testa	d_K	[mm]	15,50	19,00	25,00	29,00
Diametro nocciolo	d_2	[mm]	3,95	5,40	6,40	6,80
Diametro gambo	d_S	[mm]	4,30	5,80	7,00	8,00
Diametro preforo(1)	$d_{V,S}$	[mm]	4,0	5,0	6,0	7,0
Diametro preforo ⁽²⁾	$d_{V,H}$	[mm]	4,0	6,0	7,0	8,0

PARAMETRI MECCANICI CARATTERISTICI

Diametro nominale	d_1	[mm]	6	8	10	12
Resistenza a trazione	f _{tens,k}	[kN]	11,3	20,1	31,4	33,9
Momento di snervamento	$M_{y,k}$	[Nm]	9,5	20,1	35,8	48,0

			legno di conifera (softwood)	LVL di conifera (LVL softwood)	LVL di faggio preforato (Beech LVL predrilled)
Parametro di resistenza ad estrazione	$f_{ax,k}$	[N/mm ²]	11,7	15,0	29,0
Parametro di penetrazione della testa	$f_{\text{head},k}$	[N/mm ²]	10,5	20,0	-
Densità associata	ρ_{a}	[kg/m ³]	350	500	730
Densità di calcolo	$ ho_k$	[kg/m³]	≤ 440	410 ÷ 550	590 ÷ 750

Per applicazioni con materiali differenti si rimanda a ETA-11/0030.

⁽¹⁾Preforo valido per legno di conifera (softwood). (2)Preforo valido per legni duri (hardwood) e per LVL in legno di faggio.

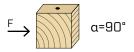
■ CODICI E DIMENSIONI

d_1	d_K	CODICE	L	b	Α	pz.
[mm]	[mm]		[mm]	[mm]	[mm]	
		TBS660	60	40	20	100
		TBS670	70	40	30	100
		TBS680	80	50	30	100
		TBS690	90	50	40	100
		TBS6100	100	60	40	100
		TBS6120	120	75	45	100
		TBS6140	140	75	65	100
		TBS6160	160	75	85	100
6	45.5	TBS6180	180	75	105	100
TX 30	15,5	TBS6200	200	75	125	100
		TBS6220	220	100	120	100
		TBS6240	240	100	140	100
		TBS6260	260	100	160	100
		TBS6280	280	100	180	100
		TBS6300	300	100	200	100
		TBS6320	320	100	220	100
		TBS6360	360	100	260	100
		TBS6400	400	100	300	100
		TBS840	40	32	8	100
		TBS860	60	52	8	100
		TBS880	80	52	28	50
		TBS8100	100	52	48	50
		TBS8120	120	80	40	50
		TBS8140	140	80	60	50
		TBS8160	160	100	60	50
		TBS8180	180	100	80	50
		TBS8200	200	100	100	50
		TBS8220	220	100	120	50
		TBS8240	240	100	140	50
0		TBS8260	260	100	160	50
8 TX 40	19,0	TBS8280	280	100	180	50
		TBS8300	300	100	200	50
		TBS8320	320	100	220	50
		TBS8340	340	100	240	50
		TBS8360	360	100	260	50
		TBS8380	380	100	280	50
		TBS8400	400	100	300	50
		TBS8440	440	100	340	50
		TBS8480	480	100	380	50
		TBS8520	520	100	420	50
		TBS8560	560	100	460	50
		TBS8580	580	100	480	50
		TBS8600	600	100	500	50

d_1	d_K	CODICE	L	b	Α	pz.									
[mm]	[mm]		[mm]	[mm]	[mm]										
		TBS10100	100	52	48	50									
		TBS10120	120	60	60	50									
		TBS10140	140	60	80	50									
		TBS10160	160	80	80	50									
		TBS10180	180	80	100	50									
		TBS10200	200	100	100	50									
		TBS10220	220	100	120	50									
		TBS10240	240	100	140	50									
		TBS10260	260	100	160	50									
40		TBS10280	280	100	180	50									
10 TX 50	25,0	TBS10300	300	100	200	50									
1 X 50		TBS10320	320	120	200	50									
		TBS10340	340	120	220	50									
		TBS10360	360	120	240	50									
		TBS10380	380	120	260	50									
		TBS10400	400	120	280	50									
		TBS10440	440	120	320	50									
		TBS10480	480	120	360	50									
											TBS10520	520	120	400	50
		TBS10560	560	120	440	50									
		TBS10600	600	120	480	50									
		TBS12200	200	120	80	25									
		TBS12240	240	120	120	25									
		TBS12280	280	120	160	25									
		TBS12320	320	120	200	25									
		TBS12360	360	120	240	25									
12		TBS12400	400	140	260	25									
TX 50	29,0	TBS12440	440	140	300	25									
		TBS12480	480	140	340	25									
		TBS12520	520	140	380	25									
		TBS12560	560	140	420	25									
		TBS12600	600	140	460	25									
		TBS12800	800	160	640	25									
		TBS121000	1000	160	840	25									

■ PRODOTTI CORRELATI

XYLOFON WASHER pag. 73


TORQUE LIMITER pag. 408

■ DISTANZE MINIME PER VITI SOLLECITATE A TAGLIO | LEGNO

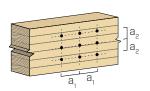
viti inserite SENZA preforo

 $\rho_k \leq 420 \; kg/m^3$

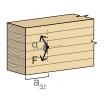
d_1	[mm]		6	8	10	12
a ₁	[mm]	10·d	60	80	100	120
a ₂	[mm]	5·d	30	40	50	60
a _{3,t}	[mm]	15·d	90	120	150	180
a _{3,c}	[mm]	10·d	60	80	100	120
a _{4,t}	[mm]	5·d	30	40	50	60
a _{4,c}	[mm]	5·d	30	40	50	60

d_1	[mm]		6	8	10	12
a ₁	[mm]	5·d	30	40	50	60
a ₂	[mm]	5·d	30	40	50	60
a _{3,t}	[mm]	10 ⋅d	60	80	100	120
a _{3,c}	[mm]	10 ⋅d	60	80	100	120
a _{4,t}	[mm]	10 ⋅d	60	80	100	120
a _{4,c}	[mm]	5·d	30	40	50	60

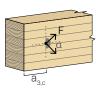
viti inserite CON preforo

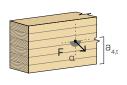


d_1	[mm]		6	8	10	12
a ₁	[mm]	5·d	30	40	50	60
a ₂	[mm]	3·d	18	24	30	36
a _{3,t}	[mm]	12·d	72	96	120	144
a _{3,c}	[mm]	7·d	42	56	70	84
a _{4,t}	[mm]	3·d	18	24	30	36
a _{4,c}	[mm]	3·d	18	24	30	36


d_1	[mm]		6	8	10	12
a ₁	[mm]	4·d	24	32	40	48
a ₂	[mm]	4·d	24	32	40	48
a _{3,t}	[mm]	7∙d	42	56	70	84
a _{3,c}	[mm]	7∙d	42	56	70	84
a _{4,t}	[mm]	7∙d	42	56	70	84
a _{4,c}	[mm]	3·d	18	24	30	36

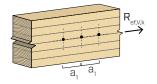
 α = angolo tra forza e fibre


 $d = d_1 = diametro nominale vite$



estremità scarica 90° < α < 270°

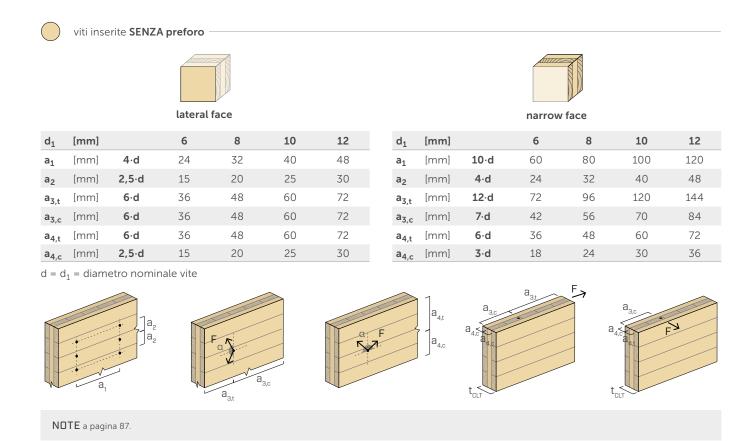
bordo sollecitato 0° < α < 180°


bordo scarico 180° < α < 360°

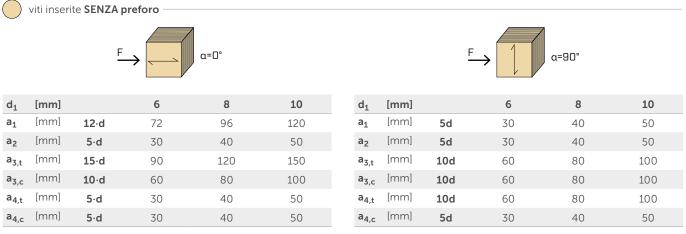
NOTE a pagina 87.

NUMERO EFFICACE PER VITI SOLLECITATE A TAGLIO

La capacità portante di un collegamento realizzato con più viti, tutte dello stesso tipo e dimensione, può essere minore della somma delle capacità portanti del singolo mezzo di unione. Per una fila di n viti disposte parallelamente alla direzione della fibratura ad una distanza a₁, la capacità portante caratteristica efficace è pari a:

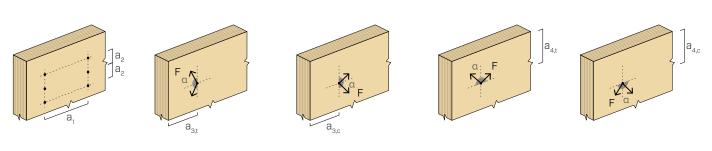

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Il valore di n_{ef} è riportato nella tabella sottostante in funzione di n e di a_1 .


							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
"	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

^(*)Per valori intermedi di a_1 è possibile interpolare linearmente.

DISTANZE MINIME PER VITI SOLLECITATE A TAGLIO E CARICATE ASSIALMENTE | X-LAM



DISTANZE MINIME PER VITI SOLLECITATE A TAGLIO | LVL

 α = angolo tra forza e fibre

 $d = d_1 = diametro nominale vite$

NOTE a pagina 87.

					TAGLIO				TRAZIONE	
	geon	netria		legno-legno ε=90°	legno-legno ε=0°	pannell	o-legno	estrazione filetto ε=90°	estrazione filetto ε=0°	penetrazione testa
	d ₁		A			wag S				
d_1	L	b	Α	R _{V,90,k}	$R_{V,0,k}$	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	$R_{ax,0,k}$	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	60	40	20	1,89	1,02		-	3,03	0,91	2,72
	70	40	30	2,15	1,20		-	3,03	0,91	2,72
	80	50	30	2,15	1,37		2,14	3,79	1,14	2,72
	90	50	40	2,35	1,38		2,50	3,79	1,14	2,72
	100	60	40	2,35	1,58		2,50	4,55	1,36	2,72
	120	75	45	2,35	1,69		2,50	5,68	1,70	2,72
	140	75	65	2,35	1,69		2,50	5,68	1,70	2,72
	160	75	85	2,35	1,69		2,50	5,68	1,70	2,72
6	180	75	105	2,35	1,69	50	2,50	5,68	1,70	2,72
	200	75	125	2,35	1,69		2,50	5,68	1,70	2,72
	220	100	120	2,35	1,83		2,50	7,58	2,27	2,72
	240	100	140	2,35	1,83		2,50	7,58	2,27	2,72
	260	100	160	2,35	1,83		2,50	7,58	2,27	2,72
	280	100	180	2,35	1,83		2,50	7,58	2,27	2,72
	300	100	200	2,35	1,83		2,50	7,58	2,27	2,72
	320	100	220	2,35	1,83		2,50	7,58	2,27	2,72
	360	100	260	2,35	1,83		2,50	7,58	2,27	2,72
	400	100	300	2,35	1,83		2,50	7,58	2,27	2,72
	40	32	8	1,08	0,90		-	3,23	0,97	4,09
	60	52	8	1,08	1,08		-	5,25	1,58	4,09
	80	52	28	3,02	1,70		7.00	5,25	1,58	4,09
	100	52	48	3,71	1,95		3,22	5,25	1,58	4,09
	120	80	40	3,41	2,54		3,89	8,08	2,42	4,09
	140	80	60	3,71	2,61		3,89	8,08	2,42	4,09
	160	100	60	3,71	2,79		3,89	10,10	3,03	4,09
	180	100	80	3,71	2,79		3,89	10,10	3,03	4,09
	200	100	100	3,71	2,79 2,79		3,89	10,10	3,03	4,09 4,09
	240	100	120 140	3,71 3,71	2,79		3,89 3,89	10,10 10,10	3,03 3,03	4,09
	260	100	160	3,71	2,79		3,89	10,10	3,03	4,09
8	280	100	180	3,71	2,79	65	3,89	10,10	3,03	4,09
0	300	100	200	3,71	2,79	03	3,89	10,10	3,03	4,09
	320	100	220	3,71	2,79		3,89	10,10	3,03	4,09
	340	100	240	3,71	2,79		3,89	10,10	3,03	4,09
	360	100	260	3,71	2,79		3,89	10,10	3,03	4,09
	380	100	280	3,71	2,79		3,89	10,10	3,03	4,09
	400	100	300	3,71	2,79		3,89	10,10	3,03	4,09
	440	100	340	3,71	2,79		3,89	10,10	3,03	4,09
	480	100	380	3,71	2,79		3,89	10,10	3,03	4,09
	520	100	420	3,71	2,79		3,89	10,10	3,03	4,09
	560	100	460	3,71	2,79		3,89	10,10	3,03	4,09
	580	100	480	3,71	2,79		3,89	10,10	3,03	4,09
	600	100	500	3,71	2,79		3,89	10,10	3,03	4,09
	300	100	500	J,/⊥	۷,/ ۶		3,09	10,10	3,03	4,03

 ϵ = angolo fra vite e fibre

NOTE e PRINCIPI GENERALI a pagina 87.

■ VALORI STATICI | LEGNO

					TAGLIO				TRAZIONE	
	geon	netria		legno-legno ε=90°	legno-legno ε=0°	pannel	lo-legno	estrazione filetto ε=90°	estrazione filetto ε=0°	penetrazione testa
			A			Span				
d_1	L	b	Α	R _{V,90,k}	R _{V,0,k}	S _{PAN}	$R_{V,k}$	R _{ax,90,k}	$R_{ax,0,k}$	$R_{head,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	100	52	48	4,92	2,56		-	6,57	1,97	7,08
	120	60	60	5,64	2,75		-	7,58	2,27	7,08
	140	60	80	5,64	2,75		5,84	7,58	2,27	7,08
	160	80	80	5,64	3,28		5,85	10,10	3,03	7,08
	180	80	100	5,64	3,28		5,85	10,10	3,03	7,08
	200	100	100	5,64	3,87		5,85	12,63	3,79	7,08
	220	100	120	5,64	3,87		5,85	12,63	3,79	7,08
	240	100	140	5,64	3,87		5,85	12,63	3,79	7,08
	260	100	160	5,64	3,87		5,85	12,63	3,79	7,08
40	280	100	180	5,64	3,87	0.0	5,85	12,63	3,79	7,08
10	300	100	200	5,64	3,87	80	5,85	12,63	3,79	7,08
	320 340	120 120	200	5,64	4,06		5,85	15,15	4,55	7,08
	360	120	240	5,64 5,64	4,06 4,06		5,85 5,85	15,15 15,15	4,55 4,55	7,08 7,08
	380	120	260	5,64	4,06		5,85	15,15	4,55	7,08
	400	120	280	5,64	4,06		5,85	15,15	4,55	7,08
	440	120	320	5,64	4,06		5,85	15,15	4,55	7,08
	480	120	360	5,64	4,06		5,85	15,15	4,55	7,08
	520	120	400	5,64	4,06		5,85	15,15	4,55	7,08
	560	120	440	5,64	4,06		5,85	15,15	4,55	7,08
	600	120	480	5,64	4,06		5,85	15,15	4,55	7,08
	200	120	80	7,16	4,98		7,35	18,18	5,45	9,53
	240	120	120	7,16	4,98		7,35	18,18	5,45	9,53
	280	120	160	7,16	4,98		7,35	18,18	5,45	9,53
	320	120	200	7,16	4,98		7,35	18,18	5,45	9,53
	360	120	240	7,16	4,98		7,35	18,18	5,45	9,53
	400	140	260	7,16	5,20		7,35	21,21	6,36	9,53
12	440	140	300	7,16	5,20	95	7,35	21,21	6,36	9,53
	480	140	340	7,16	5,20		7,35	21,21	6,36	9,53
	520	140	380	7,16	5,20		7,35	21,21	6,36	9,53
	560	140	420	7,16	5,20		7,35	21,21	6,36	9,53
	600	140	460	7,16	5,20		7,35	21,21	6,36	9,53
	800	160	640	7,16	5,43		7,35	24,24	7,27	9,53
	1000	160	840	7,16	5,43		7,35	24,24	7,27	9,53

 ϵ = angolo fra vite e fibre

					TAGL	0				
geometria				X-LAM-X-LAM lateral face	X-LAM-X-LAM lateral face-narrow face	pannello-X-LAM lateral face		X-LAM-pannello-X-LAM lateral face		
			A		← → →	S _{PAN} [t Span E		
d_1	L	b	Α	$R_{V,k}$	$R_{V,k}$	S _{PAN}	$R_{V,k}$	S _{PAN}	t	$R_{V,k}$
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[mm]	[kN]
6	60÷70 80÷90 100 120÷200 220÷400	40 50 60 75 100	≥ 20 ≥ 30 40 ≥ 45 ≥ 120	1,77 2,00 2,22 2,22 2,22	- - -	1,82 1,82 18 1,82 1,82		18	≥ 20 ≥ 30 ≥ 40 ≥ 50 ≥ 100	2,67 2,67 2,67 2,67 2,67
8	40 60÷100 120÷140 160÷600	32 52 80 100	8 ≥ 30 ≥ 40 ≥ 60	0,98 2,23 3,16 3,51	0,98 1,70 2,80 2,98	22	1,82 1,65 2,66 2,98 2,98	22	≥ 5 ≥ 15 ≥ 45 ≥ 65	1,23 3,64 3,64 3,64
10	100 120÷140 160÷180 200÷300 320÷600	52 60 80 100 120	48 ≥ 60 ≥ 80 ≥ 100 ≥ 200	4,50 5,22 5,33 5,33 5,33	3,14 3,41 4,12 4,52 4,52	25	4,20 4,44 4,44 4,44	25	≥ 35 ≥ 45 ≥ 65 ≥ 85 ≥ 145	4,47 4,47 4,47 4,47 4,47
12	200÷360 400÷600 800÷1000	120 140 160	≥ 80 ≥ 260 ≥ 640	6,76 6,76 6,76	5,72 5,72 5,72	25	4,72 4,72 4,72	25	≥ 85 ≥ 185 ≥ 385	4,72 4,72 4,72

				TAG	GLIO
	geomet	ria		X-LAM-legno lateral face	legno-X-LAM narrow face
d_1	L	b	Α	R _{V,k}	R _{V,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]
	60-70	40	≥ 20	1,79	-
	80-90	50	≥ 30	2,02	-
6	100	60	40	2,26	-
	120-200	75	≥ 45	2,26	-
	220-400	100	≥ 120	2,26	-
	40	32	8	0,98	1,08
8	60-100	52	≥ 30	2,36	1,70
o	120-140	80	≥ 40	3,20	2,90
	160-600	100	≥ 60	3,57	3,01
	100	52	48	4,78	3,17
	120-140	60	≥ 60	5,32	3,43
10	160-180	80	≥ 80	5,42	4,15
	200-300	100	≥ 100	5,42	4,56
	320-600	120	≥ 200	5,42	4,57
	200-360	120	≥ 80	6,87	5,77
12	400-600	140	≥ 260	6,87	5,77
	800-1000	160	≥ 640	6,87	5,77

				TRAZIONE			
	geometria		estrazione filetto lateral face	estrazione filetto narrow face	penetrazione testa		
L							
d_1	L	b	R _{ax,k}	R _{ax,k}	$R_{head,k}$		
[mm]	[mm]	[mm]	[kN]	[kN]	[kN]		
	60÷70	40	2,81	-	2,52		
	80÷90	50	3,51	-	2,52		
6	100	60	4,21	-	2,52		
	120÷200	75	5,27	-	2,52		
	220÷400	100	7,02	-	2,52		
	40	32	3,00	2,39	3,79		
8	60÷100	52	4,87	3,70	3,79		
0	120÷140	80	7,49	5,45	3,79		
	160÷600	100	9,36	6,66	3,79		
	100	52	6,08	4,42	6,56		
	120÷140	60	7,02	5,03	6,56		
10	160÷180	80	9,36	6,51	6,56		
	200÷300	100	11,70	7,96	6,56		
	320÷600	120	14,04	9,38	6,56		
	200÷360	120	16,85	10,86	8,83		
12	400÷600	140	19,66	12,47	8,83		
	800÷1000	160	22,46	14,06	8,83		

NOTE e PRINCIPI GENERALI a pagina 87.

SOFTWARE

■ VALORI STATICI | LVL

						Т	AGLIO				
	geometria		LVL-	LVL		LVL-LVL-LVL		LVL-l	egno	legno-LVL	
					A L		•	A		A	
d ₁ [mm]	L [mm]	b [mm]	A [mm]	R _{V,k} [kN]	A [mm]	t₂ [mm]	R_{V,k} [kN]	A [mm]	R _{V,k} [kN]	A [mm]	R _{V,k} [kN]
[[[]]]						[IIIIII]					
	80÷90 100	50	-	7.00	-	-	-	-	-	≥ 30	2,21
6		60	45	3,02	-	- 75	-	45	2,80	40	2,44
	120÷200 220÷400	75 100	≥ 45 ≥ 120	3,02	≥ 45 > 70	≥ 75	5,47	≥ 45	2,92	≥ 45	2,44
	120÷140	80	≥ 120 ≥ 60	3,02 4,74	≥ 70	≥ 85	6,05	≥ 120 ≥ 60	2,92 4,34	≥ 120 ≥ 40	2,44 3,51
8	160÷180	100	≥ 60	4,74	-	-	-	≥ 60	4,54	≥ 40	3,85
0	200÷600	100	≥ 60	4,74	≥ 60	≥ 75	9,48	≥ 60	4,57	≥ 60	3,85
	120÷140	60		-	_ 00	-	-		-	≥ 60	5,84
	160÷180	80	≥ 75	7,23	-	-	-	≥ 75	6,60	≥ 80	5,85
10	200	100	100	7,35	_	-	-	100	7,10	100	5,85
	220÷300	100	≥ 120	7,35	≥ 75	≥ 75	13,73	≥ 100	7,10	≥ 100	5,85
	320÷600	120	≥ 200	7,35	≥ 100	≥ 125	14,69	≥ 200	7,10	≥ 200	5,85

				TRAZIONE			
	geometria		estrazione filetto flat				
d_1	L	b	R _{ax,k}	R _{ax,k}	$R_{head,k}$		
[mm]	[mm]	[mm]	[kN]	[kN]	[kN]		
	60÷70	40	3,48	2,32	4,65		
	80÷90	50	4,36	2,90	4,65		
6	100	60	5,23	3,48	4,65		
	120÷200	75	6,53	4,36	4,65		
	220÷400	100	8,71	5,81	4,65		
	40	32	3,72	2,48	6,99		
	60÷100	52	6,04	4,03	6,99		
8	120÷140	80	9,29	6,19	6,99		
	160÷180	100	11,61	7,74	6,99		
	200÷600	100	11,61	7,74	6,99		
	100	52	7,55	5,03	12,10		
	120÷140	60	8,71	5,81	12,10		
10	160÷180	80	11,61	7,74	12,10		
	200÷300	100	14,52	9,68	12,10		
	320÷600	120	17,42	11,61	12,10		

NOTE e PRINCIPI GENERALI a pagina 87.

VALORI STATICI

PRINCIPI GENERALI

- I valori caratteristici sono secondo normativa EN 1995:2014 in accordo a ETA-11/0030
- I valori di progetto si ricavano dai valori caratteristici come segue:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

l coefficienti γ_M e k_{mod} sono da assumersi in funzione della normativa vigente utilizzata per il calcolo.

- Per i valori di resistenza meccanica e per la geometria delle viti si è fatto riferimento a quanto riportato in ETA-11/0030.
- Il dimensionamento e la verifica degli elementi in legno e dei pannelli devono essere svolti a parte.
- Il posizionamento delle viti deve essere realizzato nel rispetto delle distanze minime
- Le resistenze caratteristiche a taglio sono valutate per viti inserite senza preforo; nel caso di viti inserite con preforo è possibile ottenere valori di resistenza maggiori.
- Le resistenze a taglio sono state calcolate considerando la parte filettata completamente inserita nel secondo elemento.
- Le resistenze caratteristiche a taglio pannello-legno sono valutate considerando un pannello OSB o un pannello di particelle di spessore S_{PAN} e densità $\rho_k = 500 \text{ kg/m}^3$.
- Le resistenze caratteristiche ad estrazione del filetto sono state valutate considerando una lunghezza di infissione pari a b.
- La resistenza caratteristica di penetrazione della testa è stata valutata su elemento in legno o base di legno.
- Per configurazioni di calcolo differenti è disponibile il software MyProject (www.rothoblaas.it).

NOTE | LEGNO

- Le resistenze caratteristiche a taglio legno-legno sono state valutate considerando sia un angolo ϵ di 90° (R_{V,90,k}) sia di 0° (R_{V,0,k}) fra le fibre del secondo elemento ed il connettore.
- Le resistenze caratteristiche a taglio panello-legno sono state valutate considerando un angolo e di 90° fra le fibre dell'elemento in legno ed il connettore.
- Le resistenze caratteristiche ad estrazione del filetto sono state valutate considerando sia un angolo ϵ di 90° ($R_{ax,90,k}$) sia di 0° ($R_{ax,0,k}$) fra le fibre dell'elemento in legno ed il connettore.

Per valori di ρ_{k} differenti, le resistenze tabellate (taglio legno-legno e trazione) possono essere convertite tramite il coefficiente $k_{dens}.$

$$R'_{V,k} = k_{dens,v} \cdot R_{V,k}$$

 $R'_{ax,k} = k_{dens,ax} \cdot R_{ax,k}$
 $R'_{head,k} = k_{dens,ax} \cdot R_{head,k}$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

I valori di resistenza così determinati potrebbero differire, a favore di sicurezza, da quelli derivanti da un calcolo esatto.

NOTE | X-LAM

- I valori caratteristici sono secondo le specifiche nazionali ÖNORM EN 1995
 Annex K.
- In fase di calcolo si è considerata una massa volumica per gli elementi in X-LAM pari a $\rho_k=350$ kg/m 3 e per gli elementi in legno pari a $\rho_k=385$ kg/m 3 .
- Le resistenze caratteristiche a taglio sono valutate considerando una lunghezza di infissione minima della vite pari a $4\cdot d_1$.
- La resistenza caratteristica a taglio è indipedente dalla direzione della fibratura dello strato esterno dei pannelli in X-LAM.
- La resistenza assiale ad estrazione del filetto in narrow face è valida per spessore minimo X-LAM t_{CLT,min} = 10·d₁ e profondità di penetrazione minima della vite t_{pen} = 10·d₁.

NOTE | LVL

- In fase di calcolo si è considerata una massa volumica degli elementi in LVL in legno di conifera (softwood) pari a $\rho_k=480~\text{kg/m}^3$ e degli elementi in legno pari a $\rho_k=385~\text{kg/m}^3$.
- Le resistenze caratteristiche a taglio sono valutate per connettori inseriti sulla faccia laterale (wide face) considerando, per i singoli elementi lignei, un angolo di 90° fra il connettore e la fibra, un angolo di 90° fra il connettore e la faccia laterale dell'elemento in LVL ed un angolo di 0° fra la forza e la fibra.
- La resistenza assiale ad estrazione del filetto è stata valutata considerando un angolo di 90° fra le fibre ed il connettore.
- Viti più corte della minima tabellata non sono compatibili con le ipotesi di calcolo e quindi non vengono riportate.

DISTANZE MINIME

NOTE | LEGNO

- Le distanze minime sono secondo normativa EN 1995:2014 in accordo a ETA-11/0030.
- Nel caso di giunzione pannello-legno le spaziature minime (a₁, a₂) possono essere moltiplicate per un coefficiente 0,85.
- Nel caso di giunzioni con elementi di abete di Douglas (Pseudotsuga menziesii) le spaziature e le distanze minime parallele alla fibra devono essere moltiplicate per un coefficiente 1.5.
- La spaziatura a_1 tabellata per viti con punta 3 THORNS inserite senza preforo in elementi in legno con densità $\rho_K \leq 420 \text{ kg/m}^3$ ed angolo tra forza e fibre $\alpha = 0^\circ$ si è assunta pari a $10 \cdot d$ sulla base di prove sperimentali; in alternativa, adottare $12 \cdot d$ in accordo a EN 1995:2014.

NOTE | X-LAM

- Le distanze minime sono in accordo a ETA-11/0030 e da ritenersi valide ove non diversamente specificato nei documenti tecnici dei pannelli X-LAM.
- Le distanze minime sono valide per spessore minimo X-LAM $t_{CLT,min}$ = $10 \cdot d_1$.
- Le distanze minime riferite a "narrow face" sono valide per profondità di penetrazione minima della vite $t_{pen}=10\cdot d_1$.

NOTE | LVL

- Le distanze minime sono in accordo a ETA-11/0030 e da ritenersi valide ove non diversamente specificato nei documenti tecnici dei pannelli LVL.
- Le distanze minime sono valide con l'utilizzo sia di LVL in legno di conifera (softwood) a sfogliati paralleli che incrociati.
- Le distanze minime senza preforo sono valide per spessori minimi degli elementi in LVL t_{min}:

$$t_{1} \ge 8.4 \cdot d - 9$$

$$t_{2} \ge \begin{cases} 11.4 \cdot d \\ 75 \end{cases}$$

dove

- t_1 è lo spessore in mm dell'elemento in LVL in un collegamento con 2 elementi lignei. Nel caso di collegamenti con 3 o più elementi t_1 rappresenta lo spessore dell'LVL posizionato più esternamente;
- t_2 è lo spessore in mm dell'elemento centrale in un collegamento con 3 o più elementi.