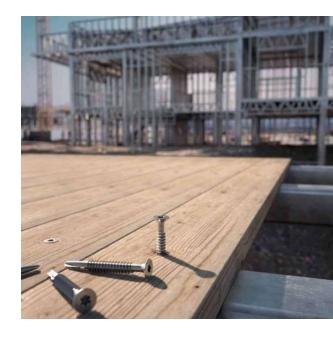


VITE AUTOFORANTE PER LEGNO-METALLO

CERTIFICATA


La vite autoforante SBS è marcata CE secondo la norma EN 14592. È la scelta ideale per i professionisti che richiedono qualità, sicurezza e prestazioni affidabili nelle applicazioni strutturali legno-metallo.

PUNTA LEGNO-METALLO

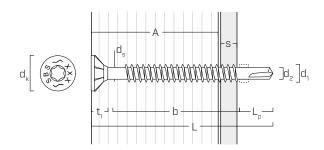
Speciale punta autoforante con geometria a sfiato per un'eccellente capacità di foratura sia su alluminio (fino a 8 mm di spessore) che su acciaio (fino a 6 mm di spessore).

ALETTE FRESATRICI

Le alette proteggono il filetto della vite durante la penetrazione nel legno. Garantiscono una massima efficienza di filettatura nel metallo ed una perfetta adesione tra lo spessore ligneo ed il metallo.

CAMPI DI IMPIEGO

Fissaggio diretto e senza preforo di elementi in legno a sottostrutture:

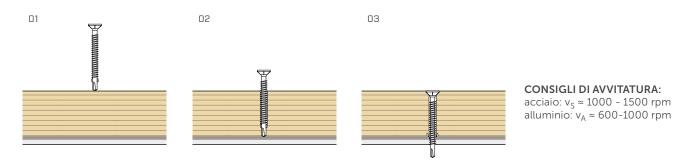

- in acciaio S235 di spessore massimo 6 mm
- in alluminio di spessore massimo 8,0 mm

■ CODICI E DIMENSIONI

d ₁	CODICE	L	b	Α	s _S	s _A	pz.
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	
4,2	SBS4232	32	18	17	1 ÷ 3	2 ÷ 4	500
TX 20	SBS4238	38	19	23	1 ÷ 3	2 ÷ 4	500
4,8	SBS4838	38	23	22	2 ÷ 4	3 ÷ 5	200
TX 25	SBS4845	45	25	29	2 ÷ 4	3 ÷ 5	200
5,5	SBS5545	45	29	28	3 ÷ 5	4 ÷ 6	200
TX 30	SBS5550	50	29	33	3 ÷ 5	4 ÷ 6	200
	SBS6360	60	35	39	4 ÷ 6	6 ÷ 8	100
6,3	SBS6370	70	45	49	4 ÷ 6	6 ÷ 8	100
TX 30	SBS6385	85	55	64	4 ÷ 6	6 ÷ 8	100
	SBS63100	100	55	79	4 ÷ 6	6 ÷ 8	100

 s_S spessore forabile piastra acciaio S235/St37

■ GEOMETRIA E CARATTERISTICHE MECCANICHE


GEOMETRIA

Diametro nominale	d_1	[mm]	4,2	4,8	5,5	6,3
Diametro testa	d _K	[mm]	8,00	9,25	10,50	12,00
Diametro nocciolo	d ₂	[mm]	3,30	3,50	4,15	4,85
Diametro gambo	d _S	[mm]	3,40	3,85	4,45	5,20
Spessore testa	t_1	[mm]	3,50	4,20	4,80	5,30
Lunghezza punta	L _p	[mm]	10,0	10,5	11,5	15,0

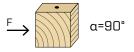
PARAMETRI MECCANICI CARATTERISTICI

Diametro nominale	d_1	[mm]	4,2	4,8	5,5	6,3
Resistenza a trazione	$f_{\text{tens},k}$	[kN]	7,5	9,5	10,5	16,5
Momento di snervamento	$M_{y,k}$	[Nm]	3,4	7,6	10,5	18,0
Parametro di resistenza ad estrazione	$f_{ax,k}$	[N/mm ²]	-	-	-	-
Densità associata	ρ_{a}	[kg/m ³]	-	-	-	-
Parametro di penetrazione della testa	f _{head,k}	[N/mm ²]	10,0	10,0	13,0	14,0
Densità associata	ρ_{a}	[kg/m ³]	350	350	350	350

INSTALLAZIONE

s_A spessore forabile piastra alluminio

DISTANZE MINIME PER VITI SOLLECITATE A TAGLIO

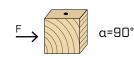


viti inserite SENZA preforo

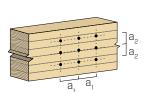
 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	10 ⋅d	42	48	12·d	66	76
a ₂	[mm]	5·d	21	24	5·d	28	32
a _{3,t}	[mm]	15 ⋅d	63	72	15 ⋅d	83	95
a _{3,c}	[mm]	10 ⋅d	42	48	10·d	55	63
a _{4,t}	[mm]	5·d	21	24	5·d	28	32
a _{4,c}	[mm]	5·d	21	24	5·d	28	32

d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	5·d	21	24	5·d	28	32
a ₂	[mm]	5·d	21	24	5·d	28	32
a _{3,t}	[mm]	10 ⋅d	42	48	10·d	55	63
a _{3,c}	[mm]	10 ⋅d	42	48	10·d	55	63
a _{4,t}	[mm]	7∙d	29	34	10·d	55	63
a _{4,c}	[mm]	5·d	21	24	5·d	28	32

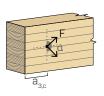

 $d = d_1 = diametro nominale vite$

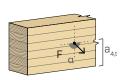
viti inserite CON preforo



d_1	[mm]		4,2	4,8		5,5	6,3
a ₁	[mm]	5·d	21	24	5·d	28	32
a ₂	[mm]	3·d	13	14	3·d	17	19
a _{3,t}	[mm]	12·d	50	58	12·d	66	76
a _{3,c}	[mm]	7∙d	29	34	7·d	39	44
a _{4,t}	[mm]	3·d	13	14	3·d	17	19
a _{4,c}	[mm]	3·d	13	14	3·d	17	19

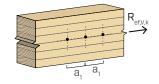
5,5 4,2 6,3 d_1 [mm] 4,8 4·d 17 19 4·d 22 25 [mm] a_1 a_2 [mm] 4·d 17 19 4·d 22 25 7∙d 29 34 7∙d 39 44 [mm] a_{3,c} [mm] 7·d 29 34 7·d 39 44 5-d 24 7.d 44 [mm] 21 39 $a_{4,c}$ [mm] 3·d 13 14 17 19


 $[\]alpha$ = angolo tra forza e fibre $d = d_1 = diametro nominale vite$



estremità scarica 90° < α < 270°

bordo sollecitato 0° < α < 180°


bordo scarico 180° < α < 360°

• Le distanze minime sono secondo normativa EN 1995:2014.

NUMERO EFFICACE PER VITI SOLLECITATE A TAGLIO

La capacità portante di un collegamento realizzato con più viti, tutte dello stesso tipo e dimensione, può essere minore della somma delle capacità portanti del singolo mezzo di unione. Per una fila di n viti disposte parallelamente alla direzione della fibratura ad una distanza a₁, la capacità portante caratteristica efficace è pari a:

$$R_{ef,V,k} = n_{ef} \cdot R_{V,k}$$

Il valore di n_{ef} è riportato nella tabella sottostante in funzione di n e di a_1 .

							a ₁ (*)					
		4·d	5·d	6·d	7⋅d	8·d	9·d	10 ⋅d	11-d	12·d	13·d	≥ 14·d
	2	1,41	1,48	1,55	1,62	1,68	1,74	1,80	1,85	1,90	1,95	2,00
n	3	1,73	1,86	2,01	2,16	2,28	2,41	2,54	2,65	2,76	2,88	3,00
	4	2,00	2,19	2,41	2,64	2,83	3,03	3,25	3,42	3,61	3,80	4,00
	5	2,24	2,49	2,77	3,09	3,34	3,62	3,93	4,17	4,43	4,71	5,00

 $^{(\}star)$ Per valori intermedi di a_1 è possibile interpolare linearmente.

 $[\]alpha$ = angolo tra forza e fibre

				TAG	LIO		TRAZIONE			
	geometria		le	egno - acciaio piastra min	Į.	egno - acciaio piastra max	trazione acciaio	pei	netrazione testa	
			S _S C		S _S			А		
d ₁ [mm]	L [mm]	b [mm]	S _S	R _{V,k} [kN]	S _S	R _{V,k} [kN]	R _{tens,k} [kN]	A _{min} [mm]	R _{head,k} [kN]	
4,2	32 38	18 19	1	0,62 0,80	3	0,64 0,85	7,50	-	-	
4,8	38 45	23 25	2	0,83 1,05	4	1,00 1,20	9,50	20	- 0,92	
5,5	45 50	29 29	3	1,12 1,29	5	1,36 1,51	10,50	20	1,55 1,55	
	60	35		1,78		2,03		25	2,18	
6,3	70	45	4	2,16	6	2,38	16,50		2,18	
0,3	85	55	4	2,42	O	2,90			2,18	
	100	55		2,43		3,00			2,18	

 ϵ = angolo fra vite e fibre

VALORI STATICI

PRINCIPI GENERALI

- I valori caratteristici sono secondo normativa EN 1995:2014.
- I valori di progetto si ricavano dai valori caratteristici come segue:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

l coefficienti γ_M e $k_{\mbox{mod}}$ sono da assumersi in funzione della normativa vigente utilizzata per il calcolo.

- I valori di resistenza meccanica e la geometria delle viti sono in accordo alla marcatura CE secondo EN 14592.
- Il dimensionamento e la verifica degli elementi in legno e delle piastre in acciaio devono essere svolti a parte.
- Il posizionamento delle viti deve essere realizzato nel rispetto delle distanze minime.
- La resistenza caratterística di penetrazione della testa è stata valutata su elemento in legno o base di legno.

NOTE | LEGNO

- Le resistenze caratteristiche a taglio su piastra sono valutate considerando il caso di piastra sottile ($S_S \le 0.5 d_1$) e piastra intermedia ($0.5 d_1 < S_S < d_1$).
- Le resistenze caratteristiche a taglio su piastra di acciaio sono calcolate per lo spessore forabile minimo $s_{s,min}$ (piastra min) e massimo $s_{s,max}$ (piastra max).
- In fase di calcolo si è considerata una massa volumica degli elementi lignei pari a $\rho_k=385\ \text{kg/m}^3.$